Intracellular sodium determines frequency-dependent alterations in contractility in hypertrophied feline ventricular myocytes.
نویسندگان
چکیده
Hypertrophy and failure (H/F) in humans and large mammals are characterized by a change from a positive developed force-frequency relationship (+FFR) in normal myocardium to a flattened or negative developed force-frequency relationship (-FFR) in disease. Altered Ca(2+) homeostasis underlies this process, but the role of intracellular Na(+) concentration ([Na(+)](i)) in H/F and frequency-dependent contractility reserve is unclear. We hypothesized that altered [Na(+)](i) is central to the -FFR response in H/F feline myocytes. Aortic constriction caused left ventricular hypertrophy (LVH). We found that as pacing rate was increased, contraction magnitude was maintained in isolated control myocytes (CM) but decreased in LVH myocytes (LVH-M). Quiescent LVH-M had higher [Na(+)](i) than CM (LVH-M 13.3 +/- 0.3 vs. CM 8.9 +/- 0.2 mmol/l; P < 0.001) with 0.5-Hz pacing (LVH-M 14.9 +/- 0.5 vs. CM 10.8 +/- 0.4 mmol/l; P < 0.001) but were not different at 2.5 Hz (17.0 +/- 0.7 vs. control 16.0 +/- 0.7 mmol/l; not significant). [Na(+)](i) was altered by patch pipette dialysis to define the effect of [Na(+)](i) on contraction magnitude and action potential (AP) wave shape at slow and fast pacing rates. Using AP clamp, we showed that LVH-M require increased [Na(+)](i) and long diastolic intervals to maintain normal shortening. Finally, we determined the voltage dependence of contraction for Ca(2+) current (I(Ca))-triggered and Na(+)/Ca(2+) exchanger-mediated contractions and showed that there is a greater [Na(+)](i) dependence of contractility in LVH-M. These data show that increased [Na(+)](i) is essential for maintaining contractility at slow heart rates but contributes to small contractions at fast rates unless rate-dependent AP shortening is prevented, suggesting that altered [Na(+)](i) regulation is a critical contributor to abnormal contractility in disease.
منابع مشابه
Atrial natriuretic peptide has different effects on contractility and intracellular pH in normal and hypertrophied myocytes from pressure-overloaded hearts.
BACKGROUND Atrial natriuretic peptide (ANP) depresses contractility in left ventricular myocytes. Its expression is upregulated in pressure-overloaded hypertrophied hearts; however, the effects of ANP on contractility in hypertrophied myocytes are not known. Our aims were (1) to examine the cellular mechanisms of this depression in contractility in normal myocytes and (2) to test the hypothesis...
متن کاملModulation of contractility by myocyte-derived arginase in normal and hypertrophied feline myocardium.
L-Arginine, the sole substrate for the nitric oxide (NO) synthase (NOS) enzyme in producing NO, is also a substrate for arginase. We examined normal feline hearts and hearts with compensated left ventricular (LV) hypertrophy (LVH) produced by ascending aorta banding. Using Western blot analysis, we examined the abundance of arginase isozymes in crude homogenates and isolated cardiac myocytes ob...
متن کاملT-type Ca2+ current is expressed in hypertrophied adult feline left ventricular myocytes.
Macroscopic T-type Ca2+ currents, which are often observed in fetal and neonatal cardiac muscle cells, were not found in normal (0 of 17) adult feline ventricular myocytes. However, they were present in most (15 of 21) myocytes isolated from adult feline left ventricles with long-standing pressure-overload-induced hypertrophy. This is the first study to provide evidence in a large mammal, such ...
متن کاملAlterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release.
Depressed contractility of failing myocytes involves a decreased rate of rise of the Ca2+ transient. Synchronization of Ca2+ release from the junctional sarcoplasmic reticulum (SR) is responsible for the rapid rise of the normal Ca2+ transient. This study examined the idea that spatially and temporally dyssynchronous SR Ca2+ release slows the rise of the cytosolic Ca2+ transient in failing feli...
متن کاملDisorder in excitation-contraction coupling of cardiac muscle from cats with experimentally produced right ventricular hypertrophy.
The contractile and electrical activity of papillary muscles from hypertrophied right ventricles of cats with artificial stenosis of the pulmonary artery was investigated. Contractility was considerably decreased along the entire forcevelocity relationship, whereas no measurable alterations could be detected in the electrical activities as recorded by intracellular microelectrodes. By supramaxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 292 2 شماره
صفحات -
تاریخ انتشار 2007